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Abstract 
 

Finite Element Analysis of Poiseuille flow over permeable bed is presented in 
two cases, viz.,(i) the permeable bed is infinite and (ii) the permeable bed is 
finite. These two problems are done by Beavers & Joseph (1967).and Stephen 
Whitaker & Ochoa Tapia (1994). These are fundamental for the study of flows 
on porous media. An attempt was made to correlate the solutions of aforesaid 
authors with finite element analysis. Further the results obtained through FEM 
are found to be in good agreement with experimental results of Beavers & 
Joseph (1967).It is expected that these analyses may be useful for further 
complicate problems. 

 
 
Introduction 
Flow in channels with permeable boundaries is observed in many situations. 
Lubrication of articular cartilage with the synovial fluid is the best example. Other 
examples include porous bearings, ground water seepage flow, nuclear reactors, 
processing of composites and ceramics. An early study on boundary conditions for 
flow of a Newtonian fluid over permeable bed was performed by Beavers & Joseph 
(1967).They postulated that the slip velocity at the permeable interface differs from 
the mean filter velocity with in the permeable medium and the shear effects are 
transmitted in the body through a boundary layer region. They also proposed that the 
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slip velocity of the free fluid is proportional to the shear rate at permeable bed. 
Experimentation was performed by them and their postulation was validated.  
 Stephen Whitaker & Ochoa Tapia(1994)  introduced Brinkman’s correction  into 
the slip condition and compared their solutions with the experimentation performed 
by Beavers & Joseph. 
 We felt that Finite Element Method could be applied to this classical problem. 
Formulation of the finite element model using linear fluid element was performed for 
both the slip conditions and also compared with experimental results. Finite Element 
Tool was applied through code written in C-language.  
 
 
Finite Element Solution For Infinite Bed Case 
The definition of this problem by Beavers & Jordon may be recalled here: 
 
Governing equations 
Flow in clear region 
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 Boundary conditions: 
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Formulation of the problem using linear fluid element 
Let u

�

  be the trial solution function and w(y) as the weighting function, the weighted 
residual statement would be  
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 Integrating by parts, the above equation becomes 
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using the symbol ‘Y’ for global coordinate running along the length of the entire gap 
between plates and the symbol ‘y’ for representing the local coordinate system within 
each element 0 to l, the discretization leads to 
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 Linear element is a one dimensional 2- noded element with one degree of freedom 
at each node. Further the element can take axial loads only. The pictorial summary of 
such an element is shown below:   

 

Length l

distributed load   f

Node 1 
x=0

Node 2 
x=l

Primary dof  uk                                                  uk+1

Nodal Loads  T1                                                      T2  
 

Figure 2.1: A Linear Fluid Element. 
 
 
The trial velocity solution for this linear element is  

  
1)/()/1()( ++−= kk ulyulyyu

�   (2.7) 

 It is to be observed that the shape functions )/(&)/1( 21 lyNlyN =−=   are both 
linear. For Galerkin’s method, weighting functions are chosen to be same as the trial 
solution functions. Hence  2211 )()( NyandwNyw ==  . 
 Making the substitutions the weighted residual statement shown by equation (9) 
reduces to the finite element equation: 
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 The matrix on the L.H.S is the element stiffness matrix .The first term on R.H.S is 
the distributed load vector due to pressure gradient while the second term represents 
the point load vector due to shear stress 
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Solution Procedure 
Discretisation 

 
Impermeable 
Plate

Porous bed

 Y

X

fluid flow     
with pressure 
gradient f

Y= 0

Y= L

Node1

Node2

Node3

Node4

element1

element2

 
 

Figure 2.2: Finite Element Model. 
 

 The assembly of element equations is quite simple because the elements are in a 
line. 
 Boundary conditions are implemented through penalty approach: 

  
piiii aKK +=  & ipi uaF ×=  (2.9) 

 
ijp Ktoa max1010 63=    is the penalty number . 

 Solution of the assembly of equations is performed by Gauss elimination. 
 
Convergence of solution 
The 1-d fluid element used here is checked for convergence of solution. This is shown 
in the following diagram. 

 
Velocity Distribution - Flow Between Impermeable Plates     - 
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Figure 2.3 
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Comparison 
Velocity Field 
The exact solution for this problem according to Beavers & Joseph (Ref.1) is      
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 Where u is the velocity component in X- direction,  uB  is the slip velocity at the  
permeable bed and 

  
k
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Mass Flow Rate 
The mass flow rate per unit width of the channel is given by 
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Fractional Increase In Flow Rate 
The fractional increase in mass flow rate through the channel when compared with 
impermeable bounding top and bottom plates is   
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 The comparisons have been shown below 
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 We observe that there is good agreement between FEM theory and experimental 
result of Beavers & Joseph(1967). 
 
 
Finite Element Solution for Finite Bed Case 
Governing equations 
Figure (3.1) shows the clear fluid and porous regions with coordinate system starting 
from top plate (impermeable plate). 

 
Impermeable
 Plate

Porous bed

Y= 1

Y= 0

Fig(3.1) Coordinate System
Y= 1 + delta 

Clear region

X

 Y
fluid flow     
with pressure 
gradient f

 
 

Figure 3.1: Coordinate System. 
 
 

Region 1 (clear fluid region) 
Governing differential equation 
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Region 2 (porous fluid region) 
Governing differential equation 
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 Boundary conditions 

 At  y=0, u1 = 0 (3.3) 

 at   y=h, u1=u2 (3.4) 
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 at    y=h + delta , u2 = 0. (3.6) 
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Non-dimensionalisation 
Writing  
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 The non-dimensionalised governing equations and boundary conditions are as 
follows: 
 
Region 1 (clear fluid region) 
Governing differential equation 

  .
2
1

2

dx

dp
R

y

u
e=

∂
∂  (3.8) 

 
Region2 (porous fluid region) 
Governing differential equation 
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 Boundary conditions 

 at y=0, u1 = 0 

 at y=1, u1 =u2 
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 at y=1+delta , u2 = 0. 
 
 Note: Non-dimensionalised representation – bar over the symbols has been 
removed for ease of handling . 
 
Finite Element Formulation Using Linear Fluid Elements 
Since the flow is governed by different conditions in the clear and porous regions, the 
formulation is done separately for each region. 
 
For Clear region 
The element equation for linear fluid element described by equation (2.11) of chapter 
2 is also non-dimensionalised to give the following element equation.  
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 Note 
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 For Porous Region 
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 Integrating by parts, the above equation becomes 
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using the symbol ‘Y’ for global coordinate running along the length of the entire gap 
between plates and the symbol ‘y’ for representing the local coordinate system within 
each element, non-dimensionalised, the discretization leads to 
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 On similar lines, the trial velocity solution for linear fluid element can be written 
as 1)/()/1()( ++−= kk ulyulyyu . 

 Note the shape functions )/(&)/1( 21 lyNlyN =−=   are both linear. Following 
Galerkin’s method, weighting functions are chosen to be same as the trial solution 
functions. Hence 2211 )()( NyandwNyw ==  . 

 Making the substitutions the weighted residual statement shown by equation 
(4.15) reduces to the finite element equation:                                       
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 The two matrices on the L.H.S constitute  the element stiffness matrix .The first 
term on R.H.S is the distributed load vector due to pressure gradient while the second 
term represents the point load vector due to shear stress. 
 
Solution Procedure 
The procedure is same as that has been performed previously. However separate 
discretization is done for clear and porous regions and separate code has been written 
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for the two regions.  
 

Impermeable
 Plate

Porous bed
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Node4

Fig(3.2) Finite Element Model
Y= 1 + delta 

Clear region

Node1

Node2

Node3

element1
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X

 Y
fluid flow     
with pressure 
gradient f

 
 

Figure 3.2: Finite Element Model. 
 
 
Step2 : Write element equation for each element 
Using equation (4.11), element equation for each element is written for clear region 
while equation (4.16) is used for porous region in a similar way. 
 
Step3 : Assemble the element equations  
Since elements are in a line, assembly becomes simple. Stiffnesses at common nodes 
are added. Similarly loads at common nodes are added. The assembled equation for 
the clear region now becomes 
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 The assembled equation for the porous region now becomes 
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 (Note the above assembly of element equations is for 4 elements) 

 The Boundary conditions are implemented through penalty approach: 

  
piiii aKK +=  & ipi uaF ×=  (3.19) 



1896 S. Kiranmaiye et al 

 

 
ijp Ktoa max1010 63=    is the penalty number . 

 Solution of the assembly of equations is performed by Gauss elimination. 
 
 
Comparison 
The exact solution for the governing equation according J.A. Ochoa-Tapia and   S. 
Whitaker  is  
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 The constants are given as follows 
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1u  refers to the velocity distribution in clear region and 2u  refers to the velocity 
distribution in porous region.  
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Figure 3.5: Velocity distribution in complete region. 

 
 
Algorithm for the C-program we used to implement fem 

1. Input number of elements, viscosity of the fluid, pressure gradient f, density of 
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fluid, permeability of bed k, bed structure α, gap in the channel h. 
2. Initialize the stiffness matrix A[i][j]  terms and velocities at nodes to zero 
3. Calculate the bed velocity given by equation 2.10. 
4. Calculate non-zero – principal diagonal terms (first, last & middle terms 

separately) and remaining carpet terms of the global stiffness matrix. 
5. Compute penalty ap=max|A[i][j]|10 4. 
6. Form augmented matrix [A | b] where b is the Nodal load vector. 
7. Gauss elimination – perform row operations to form upper triangular matrix, 

substitute bottom up to get the primary dof [u]. 
8. Compute the mass flow rate mfr by summing up mass flow rate via each 

element. 
9. Calculate relative increase in mass flow rate φ. 
10. The steps are repeated for different values of σ to get the plot fractional 

increase in flow φ with respect to σ. 
 
 
Conclusions 
Formulation of the finite element model using linear fluid element was found to be 
successful in obtaining the velocity distributions for both the slip conditions and also 
compared with experimental results. Better convergence is observed even with lesser 
number of elements. 
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